Search Results for ""
111 - 120 of 2717 for Sequences and seriesSearch Results

The Cauchy product of two sequences f(n) and g(n) defined for nonnegative integers n is defined by (f degreesg)(n)=sum_(k=0)^nf(k)g(n-k).
Given a geometric sequence {a_1,a_1r,a_1r^2,...}, the number r is called the common ratio associated to the sequence.
There are (at least) three types of Euler transforms (or transformations). The first is a set of transformations of hypergeometric functions, called Euler's hypergeometric ...
A harmonic series is a continued fraction-like series [n;a,b,c,...] defined by x=n+1/2(a+1/3(b+1/4(c+...))) (Havil 2003, p. 99). Examples are given in the following table. c ...
The Erdős-Borwein constant E, sometimes also denoted alpha, is the sum of the reciprocals of the Mersenne numbers, E = sum_(n=1)^(infty)1/(2^n-1) (1) = ...
Let P(x) be defined as the power series whose nth term has a coefficient equal to the nth prime p_n, P(x) = 1+sum_(k=1)^(infty)p_kx^k (1) = 1+2x+3x^2+5x^3+7x^4+11x^5+.... (2) ...
Suppose the harmonic series converges to h: sum_(k=1)^infty1/k=h. Then rearranging the terms in the sum gives h-1=h, which is a contradiction.
The Jackson-Slater identity is the q-series identity of Rogers-Ramanujan-type given by sum_(k=0)^(infty)(q^(2k^2))/((q)_(2k)) = ...
A sequence of functions {f_n}, n=1, 2, 3, ... is said to be uniformly convergent to f for a set E of values of x if, for each epsilon>0, an integer N can be found such that ...
A geometric sequence is a sequence {a_k}, k=0, 1, ..., such that each term is given by a multiple r of the previous one. Another equivalent definition is that a sequence is ...

...