Search Results for ""
971 - 980 of 13134 for SPECIAL TOPICSSearch Results
The spherical Bessel function of the first kind, denoted j_nu(z), is defined by j_nu(z)=sqrt(pi/(2z))J_(nu+1/2)(z), (1) where J_nu(z) is a Bessel function of the first kind ...
There are (at least) two mathematical constants associated with Theodorus. The first Theodorus's constant is the elementary algebraic number sqrt(3), i.e., the square root of ...
The arithmetic-geometric mean agm(a,b) of two numbers a and b (often also written AGM(a,b) or M(a,b)) is defined by starting with a_0=a and b_0=b, then iterating a_(n+1) = ...
The beta function B(p,q) is the name used by Legendre and Whittaker and Watson (1990) for the beta integral (also called the Eulerian integral of the first kind). It is ...
The Dedekind eta function is defined over the upper half-plane H={tau:I[tau]>0} by eta(tau) = q^_^(1/24)(q^_)_infty (1) = q^_^(1/24)product_(k=1)^(infty)(1-q^_^k) (2) = ...
Expressions of the form lim_(k->infty)x_0+sqrt(x_1+sqrt(x_2+sqrt(...+x_k))) (1) are called nested radicals. Herschfeld (1935) proved that a nested radical of real nonnegative ...
The complete elliptic integral of the first kind K(k), illustrated above as a function of the elliptic modulus k, is defined by K(k) = F(1/2pi,k) (1) = ...
A Cunningham number is a binomial number of the form C^+/-(b,n)=b^n+/-1 with b>1 and n positive integers. Bases b^k which are themselves powers need not be considered since ...
The Dirichlet eta function is the function eta(s) defined by eta(s) = sum_(k=1)^(infty)((-1)^(k-1))/(k^s) (1) = (1-2^(1-s))zeta(s), (2) where zeta(s) is the Riemann zeta ...
The double factorial of a positive integer n is a generalization of the usual factorial n! defined by n!!={n·(n-2)...5·3·1 n>0 odd; n·(n-2)...6·4·2 n>0 even; 1 n=-1,0. (1) ...
...
View search results from all Wolfram sites (52311 matches)

