Search Results for ""
511 - 520 of 13134 for SPECIAL TOPICSSearch Results
The inverse function of the Gudermannian y=gd^(-1)phi gives the vertical position y in the Mercator projection in terms of the latitude phi and may be defined for 0<=x<pi/2 ...
Polynomials m_k(x;beta,c) which form the Sheffer sequence for g(t) = ((1-c)/(1-ce^t))^beta (1) f(t) = (1-e^t)/(c^(-1)-e^t) (2) and have generating function ...
The Wolstenholme numbers are defined as the numerators of the generalized harmonic number H_(n,2) appearing in Wolstenholme's theorem. The first few are 1, 5, 49, 205, 5269, ...
_2F_1(a,b;c;1)=((c-b)_(-a))/((c)_(-a))=(Gamma(c)Gamma(c-a-b))/(Gamma(c-a)Gamma(c-b)) for R[c-a-b]>0, where _2F_1(a,b;c;x) is a (Gauss) hypergeometric function. If a is a ...
A Lucas polynomial sequence is a pair of generalized polynomials which generalize the Lucas sequence to polynomials is given by W_n^k(x) = ...
The Nørlund polynomial (note that the spelling Nörlund also appears in various publications) is a name given by Carlitz (1960) and Adelberg (1997) to the polynomial ...
Let p run over all distinct primitive ordered periodic geodesics, and let tau(p) denote the positive length of p, then every even function h(rho) analytic in ...
Let p run over all distinct primitive ordered periodic geodesics, and let tau(p) denote the positive length of p, then the Selberg zeta function is defined as ...
where _3F_2(a,b,c;d,e;z) is a generalized hypergeometric function and Gamma(z) is the gamma function (Bailey 1935, p. 16; Koepf 1998, p. 32).
The orthogonal polynomials defined variously by (1) (Koekoek and Swarttouw 1998, p. 24) or p_n(x;a,b,c,d) = W_n(-x^2;a,b,c,d) (2) = (3) (Koepf, p. 116, 1998). The first few ...
...
View search results from all Wolfram sites (52311 matches)

