TOPICS
Search

Selberg Trace Formula


Let p run over all distinct primitive ordered periodic geodesics, and let tau(p) denote the positive length of p, then every even function h(rho) analytic in |I[rho]|<=epsilon+1/2 and such that |h(rho)|<=O(|rho|^(-2-delta)) for rho->+/-infty satisfies the summation formula

 sum_(k=0)^inftyh(rho_k)=(g-1)int_(-infty)^infty(-(dh^^)/(dtau))(dtau)/(sinh(1/2tau)) 
 +sum_({p})sum_(n=1)^infty(tau(p))/(2sinh[1/2ntau(p)])h^^(ntau(p)),

where g is the genus of the surface whose area is 4pi(g-1) by the Gauss-Bonnet formula.


See also

Selberg's Formula, Selberg Zeta Function

Explore with Wolfram|Alpha

References

Balazs, N. L. and Voros, A. "Chaos on the Pseudosphere." Phys. Rep. 143, 109-240, 1986.Conrey, J. B. "The Riemann Hypothesis." Not. Amer. Math. Soc. 50, 341-353, 2003. http://www.ams.org/notices/200303/fea-conrey-web.pdf.Elstrodt, J. "Die Selbergsche Spurformel für kompakte Riemannsche Flächen." Jahresber. d. Deutsche Math. Verein 83, 45-77, 1981.Hejhal, D. A. "The Selberg Trace Formula and the Riemann Zeta Function." Duke Math. J. 43, 441-482, 1976.Voros, A. "Spectral Functions, Special Functions and the Selberg Zeta Function." Commun. Math. Phys. 110, 439-465, 1987.

Referenced on Wolfram|Alpha

Selberg Trace Formula

Cite this as:

Weisstein, Eric W. "Selberg Trace Formula." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/SelbergTraceFormula.html

Subject classifications