Search Results for ""
51 - 60 of 3930 for Regularized Beta FunctionSearch Results
![](/common/images/search/spacer.gif)
The Dirichlet lambda function lambda(x) is the Dirichlet L-series defined by lambda(x) = sum_(n=0)^(infty)1/((2n+1)^x) (1) = (1-2^(-x))zeta(x), (2) where zeta(x) is the ...
Let c and d!=c be real numbers (usually taken as c=1 and d=0). The Dirichlet function is defined by D(x)={c for x rational; d for x irrational (1) and is discontinuous ...
A partial function is a function that is not total.
A special function which is given by the logarithmic derivative of the gamma function (or, depending on the definition, the logarithmic derivative of the factorial). Because ...
The confluent hypergeometric function of the second kind gives the second linearly independent solution to the confluent hypergeometric differential equation. It is also ...
The Riemann zeta function is an extremely important special function of mathematics and physics that arises in definite integration and is intimately related with very deep ...
An equation proposed by Lambert (1758) and studied by Euler in 1779. x^alpha-x^beta=(alpha-beta)vx^(alpha+beta). (1) When alpha->beta, the equation becomes lnx=vx^beta, (2) ...
For R[n]>-1 and R[z]>0, Pi(z,n) = n^zint_0^1(1-x)^nx^(z-1)dx (1) = (n!)/((z)_(n+1))n^z (2) = B(z,n+1), (3) where (z)_n is the Pochhammer symbol and B(p,q) is the beta ...
The Dirichlet eta function is the function eta(s) defined by eta(s) = sum_(k=1)^(infty)((-1)^(k-1))/(k^s) (1) = (1-2^(1-s))zeta(s), (2) where zeta(s) is the Riemann zeta ...
Q_n^((alpha,beta))(x)=2^(-n-1)(x-1)^(-alpha)(x+1)^(-beta) ×int_(-1)^1(1-t)^(n+alpha)(1+t)^(n+beta)(x-t)^(-n-1)dt. In the exceptional case n=0, alpha+beta+1=0, a nonconstant ...
![](/common/images/search/spacer.gif)
...