TOPICS
Search

Lambert's Transcendental Equation


An equation proposed by Lambert (1758) and studied by Euler in 1779.

 x^alpha-x^beta=(alpha-beta)vx^(alpha+beta).
(1)

When alpha->beta, the equation becomes

 lnx=vx^beta,
(2)

which has the solution

x=exp[-(W(-betav))/beta]
(3)
=[-(W(-vbeta))/(vbeta)]^(1/beta)
(4)
=v[[-(W(-betav))/(betav)]^(1/beta)]^beta
(5)

where W(x) is the Lambert W-function.


See also

Lambert W-Function

Explore with Wolfram|Alpha

References

Corless, R. M.; Gonnet, G. H.; Hare, D. E. G.; Jeffrey, D. J.; and Knuth, D. E. "On the Lambert W Function." Adv. Comput. Math. 5, 329-359, 1996.de Bruijn, N. G. Asymptotic Methods in Analysis. New York: Dover pp. 27-28, 1981.Euler, L. "De serie Lambertina Plurimisque eius insignibus proprietatibus." Acta Acad. Scient. Petropol. 2, 29-51, 1783. Reprinted in Euler, L. Opera Omnia, Series Prima, Vol. 6: Commentationes Algebraicae. Leipzig, Germany: Teubner, pp. 350-369, 1921.Lambert, J. H. "Observations variae in Mathesin Puram." Acta Helvitica, physico-mathematico-anatomico-botanico-medica 3, 128-168, 1758.

Referenced on Wolfram|Alpha

Lambert's Transcendental Equation

Cite this as:

Weisstein, Eric W. "Lambert's Transcendental Equation." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/LambertsTranscendentalEquation.html

Subject classifications