Search Results for ""
1431 - 1440 of 3930 for Regularized Beta FunctionSearch Results

The second Steiner circle (a term coined here for the first time) is the circumcircle of the Steiner triangle DeltaS_AS_BS_C. Its center has center function ...
Solid partitions are generalizations of plane partitions. MacMahon (1960) conjectured the generating function for the number of solid partitions was ...
Consider the sample standard deviation s=sqrt(1/Nsum_(i=1)^N(x_i-x^_)^2) (1) for n samples taken from a population with a normal distribution. The distribution of s is then ...
The superfactorial of n is defined by Pickover (1995) as n$=n!^(n!^(·^(·^(·^(n!)))))_()_(n!). (1) The first two values are 1 and 4, but subsequently grow so rapidly that 3$ ...
A lattice polygon formed by a three-choice walk. The anisotropic perimeter and area generating function G(x,y,q)=sum_(m>=1)sum_(n>=1)sum_(a>=a)C(m,n,a)x^my^nq^a, where ...
A trinomial coefficient is a coefficient of the trinomial triangle. Following the notation of Andrews (1990), the trinomial coefficient (n; k)_2, with n>=0 and -n<=k<=n, is ...
Special cases of general formulas due to Bessel. J_0(sqrt(z^2-y^2))=1/piint_0^pie^(ycostheta)cos(zsintheta)dtheta, where J_0(z) is a Bessel function of the first kind. Now, ...
Given a Poisson process, the probability of obtaining exactly n successes in N trials is given by the limit of a binomial distribution P_p(n|N)=(N!)/(n!(N-n)!)p^n(1-p)^(N-n). ...
Let H_nu^((iota))(x) be a Hankel function of the first or second kind, let x,nu>0, and define w=sqrt((x/nu)^2-1). Then ...
For r and x real, with 0<=arg(sqrt(k^2-tau^2))<pi and 0<=argk<pi, 1/2iint_(-infty)^inftyH_0^((1))(rsqrt(k^2-tau^2))e^(itaux)dtau=(e^(iksqrt(r^2+x^2)))/(sqrt(r^2+x^2)), where ...

...