Search Results for ""
1351 - 1360 of 2098 for Prime FormulasSearch Results

The second solution Q_l(x) to the Legendre differential equation. The Legendre functions of the second kind satisfy the same recurrence relation as the Legendre polynomials. ...
Let s=1/(sqrt(2pi))[Gamma(1/4)]^2=5.2441151086... (1) (OEIS A064853) be the arc length of a lemniscate with a=1. Then the lemniscate constant is the quantity L = 1/2s (2) = ...
Li's criterion states that the Riemann hypothesis is equivalent to the statement that, for lambda_n=1/((n-1)!)(d^n)/(ds^n)[s^(n-1)lnxi(s)]|_(s=1), (1) where xi(s) is the ...
Let P, Q be integers satisfying D=P^2-4Q>0. (1) Then roots of x^2-Px+Q=0 (2) are a = 1/2(P+sqrt(D)) (3) b = 1/2(P-sqrt(D)), (4) so a+b = P (5) ab = 1/4(P^2-D) (6) = Q (7) a-b ...
(d^2V)/(dv^2)+[a-2qcos(2v)]V=0 (1) (Abramowitz and Stegun 1972; Zwillinger 1997, p. 125), having solution y=C_1C(a,q,v)+C_2S(a,q,v), (2) where C(a,q,v) and S(a,q,v) are ...
The product C of two matrices A and B is defined as c_(ik)=a_(ij)b_(jk), (1) where j is summed over for all possible values of i and k and the notation above uses the ...
An algorithm for finding the nearest local minimum of a function which presupposes that the gradient of the function can be computed. The method of steepest descent, also ...
A function I_n(x) which is one of the solutions to the modified Bessel differential equation and is closely related to the Bessel function of the first kind J_n(x). The above ...
A modified spherical Bessel function of the second kind, also called a "spherical modified Bessel function of the first kind" (Arfken 1985) or (regrettably) a "modified ...
L_nu(z) = (1/2z)^(nu+1)sum_(k=0)^(infty)((1/2z)^(2k))/(Gamma(k+3/2)Gamma(k+nu+3/2)) (1) = (2(1/2z)^nu)/(sqrt(pi)Gamma(nu+1/2))int_0^(pi/2)sinh(zcostheta)sin^(2nu)thetadtheta, ...

...