Search Results for ""
951 - 960 of 1981 for Power SumSearch Results
The addition of two quantities, i.e., a plus b. The operation is denoted a+b, and the symbol + is called the plus sign. Floating-point addition is sometimes denoted direct ...
Let chi be a nonprincipal number theoretic character over Z/Zn. Then for any integer h, |sum_(x=1)^hchi(x)|<=2sqrt(n)lnn.
For a polynomial P=sum_(k=0)^na_kz^k, (1) several classes of norms are commonly defined. The l_p-norm is defined as ||P||_p=(sum_(k=0)^n|a_k|^p)^(1/p) (2) for p>=1, giving ...
The second Zagreb index for a graph with vertex count n and vertex degrees d_i for i=1, ..., n is defined by Z_2=sum_((i,j) in E(G))d_id_j, where E(G) is the edge set of G.
A^n+B^n=sum_(j=0)^(|_n/2_|)(-1)^jn/(n-j)(n-j; j)(AB)^j(A+B)^(n-2j), where |_x_| is the floor function and (n; k) is a binomial coefficient.
x^n=sum_(k=0)^n<n; k>(x+k; n), where <n; k> is an Eulerian number and (n; k) is a binomial coefficient (Worpitzky 1883; Comtet 1974, p. 242).
sum_(y=0)^m(-1)^(m-y)q^((m-y; 2))[m; y]_q(1-wq^m)/(q-wq^y) ×(1-wq^y)^m(-(1-z)/(1-wq^y);q)_y=(1-z)^mq^((m; 2)), where [n; y]_q is a q-binomial coefficient.
Pascal's triangle is a number triangle with numbers arranged in staggered rows such that a_(nr)=(n!)/(r!(n-r)!)=(n; r), (1) where (n; r) is a binomial coefficient. The ...
The study of angles and of the angular relationships of planar and three-dimensional figures is known as trigonometry. The trigonometric functions (also called the circular ...
The Zermelo-Fraenkel axioms are the basis for Zermelo-Fraenkel set theory. In the following (Jech 1997, p. 1), exists stands for exists, forall means for all, in stands for ...
...
View search results from all Wolfram sites (331565 matches)

