TOPICS
Search

Search Results for ""


1051 - 1060 of 1981 for Power SumSearch Results
The Fibonacci numbers are the sequence of numbers {F_n}_(n=1)^infty defined by the linear recurrence equation F_n=F_(n-1)+F_(n-2) (1) with F_1=F_2=1. As a result of the ...
The sinc function sinc(x), also called the "sampling function," is a function that arises frequently in signal processing and the theory of Fourier transforms. The full name ...
The totient function phi(n), also called Euler's totient function, is defined as the number of positive integers <=n that are relatively prime to (i.e., do not contain any ...
Relations in the definition of a Steenrod algebra which state that, for i<2j, Sq^i degreesSq^j(x)=sum_(k=0)^(|_i/2_|)(j-k-1; i-2k)Sq^(i+j-k) degreesSq^k(x), where f degreesg ...
The alternating harmonic series is the series sum_(k=1)^infty((-1)^(k-1))/k=ln2, which is the special case eta(1) of the Dirichlet eta function eta(z) and also the x=1 case ...
Let m>=3 be an integer and let f(x)=sum_(k=0)^na_kx^(n-k) be an integer polynomial that has at least one real root. Then f(x) has infinitely many prime divisors that are not ...
For P, Q, R, and S polynomials in n variables [P·Q,R·S]=sum_(i_1,...,i_n>=0)A/(i_1!...i_n!), (1) where A=[R^((i_1,...,i_n))(D_1,...,D_n)Q(x_1,...,x_n) ...
The nth order Bernstein expansion of a function f(x) in terms of a variable x is given by B_n(f,x)=sum_(j=0)^n(n; j)x^j(1-x)^(n-j)f(j/n), (1) (Gzyl and Palacios 1997, Mathé ...
Let phi(t)=sum_(n=0)^(infty)A_nt^n be any function for which the integral I(x)=int_0^inftye^(-tx)t^pphi(t)dt converges. Then the expansion where Gamma(z) is the gamma ...
sum_(k=0)^m(phi_k(x)phi_k(y))/(gamma_k)=(phi_(m+1)(x)phi_m(y)-phi_m(x)phi_(m+1)(y))/(a_mgamma_m(x-y),) (1) where phi_k(x) are orthogonal polynomials with weighting function ...
1 ... 103|104|105|106|107|108|109 ... 199 Previous Next

...