TOPICS
Search

Search Results for ""


501 - 510 of 3638 for Ordinary Differential Equation Systemwit...Search Results
Given a system of ordinary differential equations of the form d/(dt)[x; y; v_x; v_y]=-[0 0 -1 0; 0 0 0 -1; Phi_(xx)(t) Phi_(yx)(t) 0 0; Phi_(xy)(t) Phi_(yy)(t) 0 0][x; y; ...
A general quadratic Diophantine equation in two variables x and y is given by ax^2+cy^2=k, (1) where a, c, and k are specified (positive or negative) integers and x and y are ...
The 7.1.2 equation A^7+B^7=C^7 (1) is a special case of Fermat's last theorem with n=7, and so has no solution. No solutions to the 7.1.3, 7.1.4, 7.1.5, 7.1.6 equations are ...
The 8.1.2 equation A^8+B^8=C^8 (1) is a special case of Fermat's last theorem with n=8, and so has no solution. No 8.1.3, 8.1.4, 8.1.5, 8.1.6, or 8.1.7 solutions are known. ...
The spherical harmonics can be generalized to vector spherical harmonics by looking for a scalar function psi and a constant vector c such that M = del x(cpsi) (1) = psi(del ...
As a part of the study of Waring's problem, it is known that every positive integer is a sum of no more than 9 positive cubes (g(3)=9), that every "sufficiently large" ...
As a consequence of Matiyasevich's refutation of Hilbert's 10th problem, it can be proved that there does not exist a general algorithm for solving a general quartic ...
The 9.1.2 equation A^9=B^9+C^9 (1) is a special case of Fermat's last theorem with n=9, and so has no solution. No 9.1.3, 9.1.4, 9.1.5, 9.1.6, 9.1.7, 9.1.8, or 9.1.9 ...
The 2-1 equation A^n+B^n=C^n (1) is a special case of Fermat's last theorem and so has no solutions for n>=3. Lander et al. (1967) give a table showing the smallest n for ...
The 6.1.2 equation A^6=B^6+C^6 (1) is a special case of Fermat's last theorem with n=6, and so has no solution. No 6.1.n solutions are known for n<=6 (Lander et al. 1967; Guy ...
1 ... 48|49|50|51|52|53|54 ... 364 Previous Next

...