TOPICS
Search

Search Results for ""


161 - 170 of 5121 for Odd/even/prime/composite/square numbersSearch Results
A figurate number of the form P_n^((4))=1/6n(n+1)(2n+1), (1) corresponding to a configuration of points which form a square pyramid, is called a square pyramidal number (or ...
Levy (1963) noted that 13 = 3+(2×5) (1) 19 = 5+(2×7), (2) and from this observation, conjectured that all odd numbers >=7 are the sum of a prime plus twice a prime. This ...
Dickson states "In a letter to Tanner [L'intermediaire des math., 2, 1895, 317] Lucas stated that Mersenne (1644, 1647) implied that a necessary and sufficient condition that ...
Let sopfr(n) be the sum of prime factors (with repetition) of a number n. For example, 20=2^2·5, so sopfr(20)=2+2+5=9. Then sopfr(n) for n=1, 2, ... is given by 0, 2, 3, 4, ...
An even perfect number is perfect number that is even, i.e., an even number n whose sum of divisors (including n itself) equals n. All known perfect numbers are even, and ...
The largest known prime numbers are Mersenne primes, the largest of these known as of September 2013 bing 2^(57885161)-1, which has a whopping 17425170 decimal digits. As of ...
By way of analogy with the prime counting function pi(x), the notation pi_(a,b)(x) denotes the number of primes of the form ak+b less than or equal to x (Shanks 1993, pp. ...
Find two numbers such that x^2=y^2 (mod n). If you know the greatest common divisor of n and x-y, there exists a high probability of determining a prime factor. Taking small ...
The next prime function NP(n) gives the smallest prime larger than n. The function can be given explicitly as NP(n)=p_(1+pi(n)), where p_i is the ith prime and pi(n) is the ...
A Sierpiński number of the first kind is a number of the form S_n=n^n+1. The first few are 2, 5, 28, 257, 3126, 46657, 823544, 16777217, ... (OEIS A014566). Sierpiński proved ...
1 ... 14|15|16|17|18|19|20 ... 513 Previous Next

...