TOPICS
Search

Search Results for ""


1101 - 1110 of 3164 for OTHER FUNCTIONSSearch Results
The set of terms of first-order logic (also known as first-order predicate calculus) is defined by the following rules: 1. A variable is a term. 2. If f is an n-place ...
The Laplacian for a scalar function phi is a scalar differential operator defined by (1) where the h_i are the scale factors of the coordinate system (Weinberg 1972, p. 109; ...
Consider the Euler product zeta(s)=product_(k=1)^infty1/(1-1/(p_k^s)), (1) where zeta(s) is the Riemann zeta function and p_k is the kth prime. zeta(1)=infty, but taking the ...
The irrational constant R = e^(pisqrt(163)) (1) = 262537412640768743.9999999999992500... (2) (OEIS A060295), which is very close to an integer. Numbers such as the Ramanujan ...
The integer sequence 1, 0, 1, 1, 2, 1, 3, 2, 4, 3, 5, 4, 7, 5, 8, 7, 10, 8, 12, 10, 14, 12, 16, 14, 19, 16, 21, 19, ... (OEIS A005044) given by the coefficients of the ...
The outer Soddy circle is the solution to the four coins problem. It has circle function l=((-a+b+c)^2[f(a,b,c)+16g(a,b,c)rs])/(4bc[(a^2+b^2+c^2)-2(ab+bc+ca)+8rs]^4), (1) ...
The Skewes number (or first Skewes number) is the number Sk_1 above which pi(n)<li(n) must fail (assuming that the Riemann hypothesis is true), where pi(n) is the prime ...
A figurate number of the form P_n^((4))=1/6n(n+1)(2n+1), (1) corresponding to a configuration of points which form a square pyramid, is called a square pyramidal number (or ...
The important binomial theorem states that sum_(k=0)^n(n; k)r^k=(1+r)^n. (1) Consider sums of powers of binomial coefficients a_n^((r)) = sum_(k=0)^(n)(n; k)^r (2) = ...
The absolute moment of M_n of a probability function P(x) taken about a point a is defined by M_n=int|x-a|^nP(x)dx.
1 ... 108|109|110|111|112|113|114 ... 317 Previous Next

...