TOPICS
Search

Search Results for ""


411 - 420 of 750 for Nth RootSearch Results
A number of the form +/-sqrt(a), where a is a positive rational number which is not the square of another rational number is called a pure quadratic surd. A number of the ...
A variation of the method of false position for finding roots which fits the function in question with an exponential.
The tetranacci numbers are a generalization of the Fibonacci numbers defined by T_0=0, T_1=1, T_2=1, T_3=2, and the recurrence relation T_n=T_(n-1)+T_(n-2)+T_(n-3)+T_(n-4) ...
A method of determining the maximum number of positive and negative real roots of a polynomial. For positive roots, start with the sign of the coefficient of the lowest (or ...
Consider an n×n (0, 1)-matrix such as [a_(11) a_(23) ; a_(22) a_(34); a_(21) a_(33) ; a_(32) a_(44); a_(31) a_(43) ; a_(42) a_(54); a_(41) a_(53) ; a_(52) a_(64)] (1) for ...
The identity matrix is a the simplest nontrivial diagonal matrix, defined such that I(X)=X (1) for all vectors X. An identity matrix may be denoted 1, I, E (the latter being ...
There are at least three theorems known as Jensen's theorem. The first states that, for a fixed vector v=(v_1,...,v_m), the function |v|_p=(sum_(i=1)^m|v_i|^p)^(1/p) is a ...
The Kronecker-Weber theorem, sometimes known as the Kronecker-Weber-Hilbert theorem, is one of the earliest known results in class field theory. In layman's terms, the ...
Let a_(n+1) = 1/2(a_n+b_n) (1) b_(n+1) = (2a_nb_n)/(a_n+b_n). (2) Then A(a_0,b_0)=lim_(n->infty)a_n=lim_(n->infty)b_n=sqrt(a_0b_0), (3) which is just the geometric mean.
Let g(x)=(1-x^2)(1-k^2x^2). Then int_0^a(dx)/(sqrt(g(x)))+int_0^b(dx)/(sqrt(g(x)))=int_0^c(dx)/(sqrt(g(x))), where c=(bsqrt(g(a))+asqrt(g(b)))/(sqrt(1-k^2a^2b^2)).
1 ... 39|40|41|42|43|44|45 ... 75 Previous Next

...