TOPICS
Search

Search Results for ""


51 - 60 of 2765 for Linear Recurrence EquationSearch Results
For a simple continued fraction x=[a_0,a_1,...] with convergents p_n/q_n, the fundamental recurrence relation is given by p_nq_(n-1)-p_(n-1)q_n=(-1)^(n+1).
A second-order partial differential equation, i.e., one of the form Au_(xx)+2Bu_(xy)+Cu_(yy)+Du_x+Eu_y+F=0, (1) is called elliptic if the matrix Z=[A B; B C] (2) is positive ...
The general nonhomogeneous differential equation is given by x^2(d^2y)/(dx^2)+alphax(dy)/(dx)+betay=S(x), (1) and the homogeneous equation is x^2y^('')+alphaxy^'+betay=0 (2) ...
The Bessel differential equation is the linear second-order ordinary differential equation given by x^2(d^2y)/(dx^2)+x(dy)/(dx)+(x^2-n^2)y=0. (1) Equivalently, dividing ...
(dy)/(dx)+p(x)y=q(x)y^n. (1) Let v=y^(1-n) for n!=1. Then (dv)/(dx)=(1-n)y^(-n)(dy)/(dx). (2) Rewriting (1) gives y^(-n)(dy)/(dx) = q(x)-p(x)y^(1-n) (3) = q(x)-vp(x). (4) ...
A linear ordinary differential equation of order n is said to be homogeneous if it is of the form a_n(x)y^((n))+a_(n-1)(x)y^((n-1))+...+a_1(x)y^'+a_0(x)y=0, (1) where ...
Consider the general system of two first-order ordinary differential equations x^. = f(x,y) (1) y^. = g(x,y). (2) Let x_0 and y_0 denote fixed points with x^.=y^.=0, so ...
Given a homogeneous linear second-order ordinary differential equation, y^('')+P(x)y^'+Q(x)y=0, (1) call the two linearly independent solutions y_1(x) and y_2(x). Then ...
An indicial equation, also called a characteristic equation, is a recurrence equation obtained during application of the Frobenius method of solving a second-order ordinary ...
A difference-differential equation is a two-variable equation consisting of a coupled ordinary differential equation and recurrence equation. In older literature, the term ...
1 ... 3|4|5|6|7|8|9 ... 277 Previous Next

...