Search Results for ""
321 - 330 of 2765 for Linear Recurrence EquationSearch Results
The 9.1.2 equation A^9=B^9+C^9 (1) is a special case of Fermat's last theorem with n=9, and so has no solution. No 9.1.3, 9.1.4, 9.1.5, 9.1.6, 9.1.7, 9.1.8, or 9.1.9 ...
A solution of a linear homogeneous ordinary differential equation with polynomial coefficients.
The 6.1.2 equation A^6=B^6+C^6 (1) is a special case of Fermat's last theorem with n=6, and so has no solution. No 6.1.n solutions are known for n<=6 (Lander et al. 1967; Guy ...
An n-step Fibonacci sequence {F_k^((n))}_(k=1)^infty is defined by letting F_k^((n))=0 for k<=0, F_1^((n))=F_2^((n))=1, and other terms according to the linear recurrence ...
The Lucas numbers are the sequence of integers {L_n}_(n=1)^infty defined by the linear recurrence equation L_n=L_(n-1)+L_(n-2) (1) with L_1=1 and L_2=3. The nth Lucas number ...
The 10.1.2 equation A^(10)=B^(10)+C^(10) (1) is a special case of Fermat's last theorem with n=10, and so has no solution. No 10.1.n solutions are known with n<13. A 10.1.13 ...
A matrix is a concise and useful way of uniquely representing and working with linear transformations. In particular, every linear transformation can be represented by a ...
In elliptic cylindrical coordinates, the scale factors are h_u=h_v=sqrt(sinh^2u+sin^2v), h_z=1, and the separation functions are f_1(u)=f_2(v)=f_3(z)=1, giving a Stäckel ...
To solve the system of differential equations (dx)/(dt)=Ax(t)+p(t), (1) where A is a matrix and x and p are vectors, first consider the homogeneous case with p=0. The ...
If one solution (y_1) to a second-order ordinary differential equation y^('')+P(x)y^'+Q(x)y=0 (1) is known, the other (y_2) may be found using the so-called reduction of ...
...