Search Results for ""
1701 - 1710 of 2866 for Line plotsSearch Results
Given the sum-of-factorials function Sigma(n)=sum_(k=1)^nk!, SW(p) is the smallest integer for p prime such that Sigma[SW(p)] is divisible by p. If pSigma(n) for all n<p, ...
The nth Smarandache-Wellin number is formed from the consecutive number sequence obtained by concatenating of the digits of the first n primes. The first few are 2, 23, 235, ...
SNTP(n) is the smallest prime such that p#-1, p#, or p#+1 is divisible by n, where p# is the primorial of p. Ashbacher (1996) shows that SNTP(n) only exists 1. If there are ...
A plane shape constructed by Reinhardt (1934) that is conjectured to be the "worst" packer of all centrally-symmetric plane regions. It has a packing density of ...
Solid partitions are generalizations of plane partitions. MacMahon (1960) conjectured the generating function for the number of solid partitions was ...
Borwein et al. (2004, pp. 4 and 44) term the expression of the integrals I_1 = int_0^1x^xdx (1) = 0.783430510... (2) I_2 = int_0^1(dx)/(x^x) (3) = 1.291285997... (4) (OEIS ...
The sequence produced by sorting the digits of a number and adding them to the previous number. The values starting with n=1, 2, ... are 2, 4, 6, 8, 10, 12, 14, 16, 18, 11, ...
The maximal number of regions into which space can be divided by n planes is f(n)=1/6(n^3+5n+6) (Yaglom and Yaglom 1987, pp. 102-106). For n=1, 2, ..., these give the values ...
The number of regions into which space can be divided by n mutually intersecting spheres is N=1/3n(n^2-3n+8), giving 2, 4, 8, 16, 30, 52, 84, ... (OEIS A046127) for n=1, 2, ...
A sphenic number is a positive integer n which is the product of exactly three distinct primes. The first few sphenic numbers are 30, 42, 66, 70, 78, 102, 105, 110, 114, ... ...
...
View search results from all Wolfram sites (33725 matches)

