TOPICS
Search

Search Results for ""


1701 - 1710 of 2866 for Line plotsSearch Results
Given the sum-of-factorials function Sigma(n)=sum_(k=1)^nk!, SW(p) is the smallest integer for p prime such that Sigma[SW(p)] is divisible by p. If pSigma(n) for all n<p, ...
The nth Smarandache-Wellin number is formed from the consecutive number sequence obtained by concatenating of the digits of the first n primes. The first few are 2, 23, 235, ...
SNTP(n) is the smallest prime such that p#-1, p#, or p#+1 is divisible by n, where p# is the primorial of p. Ashbacher (1996) shows that SNTP(n) only exists 1. If there are ...
A plane shape constructed by Reinhardt (1934) that is conjectured to be the "worst" packer of all centrally-symmetric plane regions. It has a packing density of ...
Solid partitions are generalizations of plane partitions. MacMahon (1960) conjectured the generating function for the number of solid partitions was ...
Borwein et al. (2004, pp. 4 and 44) term the expression of the integrals I_1 = int_0^1x^xdx (1) = 0.783430510... (2) I_2 = int_0^1(dx)/(x^x) (3) = 1.291285997... (4) (OEIS ...
The sequence produced by sorting the digits of a number and adding them to the previous number. The values starting with n=1, 2, ... are 2, 4, 6, 8, 10, 12, 14, 16, 18, 11, ...
The maximal number of regions into which space can be divided by n planes is f(n)=1/6(n^3+5n+6) (Yaglom and Yaglom 1987, pp. 102-106). For n=1, 2, ..., these give the values ...
The number of regions into which space can be divided by n mutually intersecting spheres is N=1/3n(n^2-3n+8), giving 2, 4, 8, 16, 30, 52, 84, ... (OEIS A046127) for n=1, 2, ...
A sphenic number is a positive integer n which is the product of exactly three distinct primes. The first few sphenic numbers are 30, 42, 66, 70, 78, 102, 105, 110, 114, ... ...
1 ... 168|169|170|171|172|173|174 ... 287 Previous Next

...