Smarandache-Wellin Number

The nth Smarandache-Wellin number is formed from the consecutive number sequence obtained by concatenating of the digits of the first n primes. The first few are 2, 23, 235, 2357, 235711, ... (OEIS A019518; Smith 1996, Mudge 1997). This sequence converges to the digits of the Copeland-Erdős constant.

Prime Smarandache-Wellin numbers are called Smarandache-Wellin primes.

See also

Consecutive Number Sequences, Copeland-Erdős Constant, Copeland-Erdős Constant Digits, Smarandache-Wellin Prime

Explore with Wolfram|Alpha


Crandall, R. and Pomerance, C. Prime Numbers: A Computational Perspective, 2nd ed. New York: Springer-Verlag, 2005.Ibstedt, H. "Smarandache Concatenated Sequences." Ch. 5 in Computer Analysis of Number Sequences. Lupton, AZ: American Research Press, pp. 75-79, 1998.Mudge, M. "Not Numerology but Numeralogy!" Personal Computer World, 279-280, 1997.Sloane, N. J. A. Sequence A019518 in "The On-Line Encyclopedia of Integer Sequences."Smith, S. "A Set of Conjectures on Smarandache Sequences." Bull. Pure Appl. Sci. 15E, 101-107, 1996.

Referenced on Wolfram|Alpha

Smarandache-Wellin Number

Cite this as:

Weisstein, Eric W. "Smarandache-Wellin Number." From MathWorld--A Wolfram Web Resource.

Subject classifications