Search Results for ""
191 - 200 of 1338 for Legendre PolynomialSearch Results
Solutions to the associated Laguerre differential equation with nu!=0 and k an integer are called associated Laguerre polynomials L_n^k(x) (Arfken 1985, p. 726) or, in older ...
The Chebyshev polynomials of the first kind are a set of orthogonal polynomials defined as the solutions to the Chebyshev differential equation and denoted T_n(x). They are ...
The minimal polynomial of an algebraic number zeta is the unique irreducible monic polynomial of smallest degree p(x) with rational coefficients such that p(zeta)=0 and whose ...
Given a field F and an extension field K superset= F, if alpha in K is an algebraic element over F, the minimal polynomial of alpha over F is the unique monic irreducible ...
The maximal matching-generating polynomial M_G(x) for the graph G may be defined as the polynomial M_G(x)=sum_(k=nu_L(G))^(nu(G))m_kx^k, where nu_L(G) is the lower matching ...
The polynomials M_k(x;delta,eta) which form the Sheffer sequence for g(t) = {[1+deltaf(t)]^2+[f(t)]^2}^(eta/2) (1) f(t) = tan(t/(1+deltat)) (2) which have generating function ...
(1) where H_n(x) is a Hermite polynomial (Watson 1933; Erdélyi 1938; Szegö 1975, p. 380). The generating function ...
Polynomials b_n(x) which form a Sheffer sequence with g(t) = t/(e^t-1) (1) f(t) = e^t-1, (2) giving generating function sum_(k=0)^infty(b_k(x))/(k!)t^k=(t(t+1)^x)/(ln(1+t)). ...
A modified set of Chebyshev polynomials defined by a slightly different generating function. They arise in the development of four-dimensional spherical harmonics in angular ...
A formula also known as the Legendre addition theorem which is derived by finding Green's functions for the spherical harmonic expansion and equating them to the generating ...
...
View search results from all Wolfram sites (11960 matches)

