Search Results for ""
111 - 120 of 1310 for Lagrange Interpolating PolynomialSearch Results
Let f(z) = z+a_1+a_2z^(-1)+a_3z^(-2)+... (1) = zsum_(n=0)^(infty)a_nz^(-n) (2) = zg(1/z) (3) be a Laurent polynomial with a_0=1. Then the Faber polynomial P_m(f) in f(z) of ...
A rook polynomial is a polynomial R_(m,n)(x)=sum_(k=0)^(min(m,n))r_kx^k (1) whose number of ways k nonattacking rooks can be arranged on an m×n chessboard. The rook ...
A polynomial given in terms of the Neumann polynomials O_n(x) by S_n(x)=(2xO_n(x)-2cos^2(1/2npi))/n.
There are two kinds of Bell polynomials. A Bell polynomial B_n(x), also called an exponential polynomial and denoted phi_n(x) (Bell 1934, Roman 1984, pp. 63-67) is a ...
A polynomial having random coefficients.
A sum over all cluster perimeters.
A primitive polynomial is a polynomial that generates all elements of an extension field from a base field. Primitive polynomials are also irreducible polynomials. For any ...
A Lucas polynomial sequence is a pair of generalized polynomials which generalize the Lucas sequence to polynomials is given by W_n^k(x) = ...
Polynomials s_n(x) which form the Sheffer sequence for f^(-1)(t)=1+t-e^t, (1) where f^(-1)(t) is the inverse function of f(t), and have generating function ...
The approximating polynomial which has the smallest maximum deviation from the true function. It is closely approximated by the Chebyshev polynomials of the first kind.
...