TOPICS
Search

Schläfli Polynomial


A polynomial given in terms of the Neumann polynomials O_n(x) by

 S_n(x)=(2xO_n(x)-2cos^2(1/2npi))/n.

See also

Neumann Polynomial

Explore with Wolfram|Alpha

References

Erdelyi, A.; Magnus, W.; Oberhettinger, F.; and Tricomi, F. G. Higher Transcendental Functions, Vol. 2. Krieger, p. 34, 1981.Gradshteyn, I. S. and Ryzhik, I. M. "Neumann's and Schläfli Polynomials: O_n(z) and S_n(z)." §8.59 in Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, pp. 989-991, 2000.Iyanaga, S. and Kawada, Y. (Eds.). Encyclopedic Dictionary of Mathematics. Cambridge, MA: MIT Press, p. 1477, 1980.von Seggern, D. CRC Standard Curves and Surfaces. Boca Raton, FL: CRC Press, p. 196, 1993.Watson, G. N. A Treatise on the Theory of Bessel Functions, 2nd ed. Cambridge, England: Cambridge University Press, pp. 312-313, 1966.

Referenced on Wolfram|Alpha

Schläfli Polynomial

Cite this as:

Weisstein, Eric W. "Schläfli Polynomial." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/SchlaefliPolynomial.html

Subject classifications