TOPICS
Search

Search Results for ""


931 - 940 of 3574 for Inverse FunctionsSearch Results
Let Gamma(z) be the gamma function and n!! denote a double factorial, then [(Gamma(m+1/2))/(Gamma(m))]^2[1/m+(1/2)^21/(m+1)+((1·3)/(2·4))^21/(m+2)+...]_()_(n) ...
The elliptic exponential function eexp_(a,b)(u) gives the value of x in the elliptic logarithm eln_(a,b)(x)=1/2int_infty^x(dt)/(sqrt(t^3+at^2+bt)) for a and b real such that ...
The even part Ev(n) of a positive integer n is defined by Ev(n)=2^(b(n)), where b(n) is the exponent of the exact power of 2 dividing n. The values for n=1, 2, ..., are 1, 2, ...
An equation of the form f(x,y,...)=0, where f contains a finite number of independent variables, known functions, and unknown functions which are to be solved for. Many ...
Polynomials P_k(x) which form the Sheffer sequence for g(t) = (2t)/(e^t-1) (1) f(t) = (e^t-1)/(e^t+1) (2) and have generating function ...
A product involving an infinite number of terms. Such products can converge. In fact, for positive a_n, the product product_(n=1)^(infty)a_n converges to a nonzero number iff ...
The Dedekind eta function is defined over the upper half-plane H={tau:I[tau]>0} by eta(tau) = q^_^(1/24)(q^_)_infty (1) = q^_^(1/24)product_(k=1)^(infty)(1-q^_^k) (2) = ...
At rational arguments p/q, the digamma function psi_0(p/q) is given by psi_0(p/q)=-gamma-ln(2q)-1/2picot(p/qpi) +2sum_(k=1)^([q/2]-1)cos((2pipk)/q)ln[sin((pik)/q)] (1) for ...
There are two kinds of Bell polynomials. A Bell polynomial B_n(x), also called an exponential polynomial and denoted phi_n(x) (Bell 1934, Roman 1984, pp. 63-67) is a ...
Clausen's integral, sometimes called the log sine integral (Borwein and Bailey 2003, p. 88) is the n=2 case of the S_2 Clausen function Cl_2(theta) = ...
1 ... 91|92|93|94|95|96|97 ... 358 Previous Next

...