TOPICS
Search

Search Results for ""


1 - 10 of 3574 for Inverse FunctionsSearch Results
The notion of an inverse is used for many types of mathematical constructions. For example, if f:T->S is a function restricted to a domain S and range T in which it is ...
The inverse hyperbolic functions, sometimes also called the area hyperbolic functions (Spanier and Oldham 1987, p. 263) are the multivalued function that are the inverse ...
The inverse trigonometric functions are the inverse functions of the trigonometric functions, written cos^(-1)z, cot^(-1)z, csc^(-1)z, sec^(-1)z, sin^(-1)z, and tan^(-1)z. ...
The inverse cosine is the multivalued function cos^(-1)z (Zwillinger 1995, p. 465), also denoted arccosz (Abramowitz and Stegun 1972, p. 79; Harris and Stocker 1998, p. 307; ...
Given a function f(x), its inverse f^(-1)(x) is defined by f(f^(-1)(x))=f^(-1)(f(x))=x. (1) Therefore, f(x) and f^(-1)(x) are reflections about the line y=x. In the Wolfram ...
The inverse cosecant is the multivalued function csc^(-1)z (Zwillinger 1995, p. 465), also denoted arccscz (Abramowitz and Stegun 1972, p. 79; Spanier and Oldham 1987, p. ...
The inverse secant sec^(-1)z (Zwillinger 1995, p. 465), also denoted arcsecz (Abramowitz and Stegun 1972, p. 79; Harris and Stocker 1998, p. 315; Jeffrey 2000, p. 124), is ...
Solving the nome q for the parameter m gives m(q) = (theta_2^4(q))/(theta_3^4(q)) (1) = (16eta^8(1/2tau)eta^(16)(2tau))/(eta^(24)(tau)), (2) where theta_i(q)=theta_i(0,q) is ...
The inverse cotangent is the multivalued function cot^(-1)z (Zwillinger 1995, p. 465), also denoted arccotz (Abramowitz and Stegun 1972, p. 79; Harris and Stocker 1998, p. ...
The inverse sine is the multivalued function sin^(-1)z (Zwillinger 1995, p. 465), also denoted arcsinz (Abramowitz and Stegun 1972, p. 79; Harris and Stocker 1998, p. 307; ...
1|2|3|4 ... 358 Next

...