Search Results for ""
621 - 630 of 3325 for Hypergeometric FunctionSearch Results
![](/common/images/search/spacer.gif)
The function ber_nu(z) is defined through the equation J_nu(ze^(3pii/4))=ber_nu(z)+ibei_nu(z), (1) where J_nu(z) is a Bessel function of the first kind, so ...
The distribution of a variable is a description of the relative numbers of times each possible outcome will occur in a number of trials. The function describing the ...
Analytic continuation (sometimes called simply "continuation") provides a way of extending the domain over which a complex function is defined. The most common application is ...
A linear functional defined on a subspace of a vector space V and which is dominated by a sublinear function defined on V has a linear extension which is also dominated by ...
An integral equation of the form f(x)=int_a^xK(x,t)phi(t)dt, where K(x,t) is the integral kernel, f(x) is a specified function, and phi(t) is the function to be solved for.
An integral equation of the form phi(x)=f(x)+int_a^xK(x,t)phi(t)dt, where K(x,t) is the integral kernel, f(x) is a specified function, and phi(t) is the function to be solved ...
Lehmer's formula is a formula for the prime counting function, pi(x) = (1) where |_x_| is the floor function, a = pi(x^(1/4)) (2) b = pi(x^(1/2)) (3) b_i = pi(sqrt(x/p_i)) ...
A number n is called a barrier of a number-theoretic function f(m) if, for all m<n, m+f(m)<=n. Neither the totient function phi(n) nor the divisor function sigma(n) has a ...
Apéry's constant is defined by zeta(3)=1.2020569..., (1) (OEIS A002117) where zeta(z) is the Riemann zeta function. B. Haible and T. Papanikolaou computed zeta(3) to 1000000 ...
J_n(x)=1/piint_0^picos(ntheta-xsintheta)dtheta, where J_n(x) is a Bessel function of the first kind.
![](/common/images/search/spacer.gif)
...