TOPICS
Search

Search Results for ""


441 - 450 of 3325 for Hypergeometric FunctionSearch Results
Whipple derived a great many identities for generalized hypergeometric functions, many of which are consequently known as Whipple's identities (transformations, etc.). Among ...
The Bessel functions of the first kind J_n(x) are defined as the solutions to the Bessel differential equation x^2(d^2y)/(dx^2)+x(dy)/(dx)+(x^2-n^2)y=0 (1) which are ...
(Bailey 1935, p. 25), where _7F_6(a_1,...,a_7;b_1,...,b_6) and _4F_3(a_1,...,a_4;b_1,b_2,b_3) are generalized hypergeometric functions with argument z=1 and Gamma(z) is the ...
Thomae's theorem, also called Thomae's transformation, is the generalized hypergeometric function identity (1) where Gamma(z) is the gamma function, _3F_2(a,b,c;e,f;z) is a ...
_2F_1(-1/2,-1/2;1;h^2) = sum_(n=0)^(infty)(1/2; n)^2h^(2n) (1) = 1+1/4h^2+1/(64)h^4+1/(256)h^6+... (2) (OEIS A056981 and A056982), where _2F_1(a,b;c;x) is a hypergeometric ...
A solution of a linear homogeneous ordinary differential equation with polynomial coefficients.
The engineering terminology for one use of Fourier transforms. By breaking up a wave pulse into its frequency spectrum f_nu=F(nu)e^(2piinut), (1) the entire signal can be ...
Functions which can be expressed in terms of Legendre functions of the first and second kinds. See Abramowitz and Stegun (1972, p. 337). P_(-1/2+ip)(costheta) = (1) = ...
R_m(x,y) = (J_m^'(x)Y_m^'(y)-J_m^'(y)Y_m^'(x))/(J_m(x)Y_m^'(y)-J_m^'(y)Y_m(x)) (1) S_m(x,y) = (J_m^'(x)Y_m(y)-J_m(y)Y_m^'(x))/(J_m(x)Y_m(y)-J_m(y)Y_m(x)). (2)
If lim_(z->z_0)(f(z)-f(z_0))/(z-z_0) is the same for all paths in the complex plane, then f(z) is said to be monogenic at z_0. Monogenic therefore essentially means having a ...
1 ... 42|43|44|45|46|47|48 ... 333 Previous Next

...