TOPICS
Search

Search Results for ""


511 - 520 of 864 for Heron FormulaSearch Results
The first Debye function is defined by D_n^((1))(x) = int_0^x(t^ndt)/(e^t-1) (1) = x^n[1/n-x/(2(n+1))+sum_(k=1)^(infty)(B_(2k)x^(2k))/((2k+n)(2k!))], (2) for |x|<2pi, n>=1, ...
Also known as "Laplacian" determinant expansion by minors, expansion by minors is a technique for computing the determinant of a given square matrix M. Although efficient for ...
Consider the process of taking a number, taking its digit sum, then adding the digits of numbers derived from it, etc., until the remaining number has only one digit. The ...
The elliptic logarithm is generalization of integrals of the form int_infty^x(dt)/(sqrt(t^2+at)), for a real, which can be expressed in terms of logarithmic and inverse ...
For |z|<1, product_(k=1)^infty(1+z^k)=product_(k=1)^infty(1-z^(2k-1))^(-1). (1) Both of these have closed form representation 1/2(-1;z)_infty, (2) where (a;q)_infty is a ...
The numbers 2^npq and 2^nr are an amicable pair if the three integers p = 2^m(2^(n-m)+1)-1 (1) q = 2^n(2^(n-m)+1)-1 (2) r = 2^(n+m)(2^(n-m)+1)^2-1 (3) are all prime numbers ...
An existential sentence is a statement claiming the existence of an object with given properties. In the language of set theory it can be formulated as follows, exists x in U ...
The fibonorial n!_F, also called the Fibonacci factorial, is defined as n!_F=product_(k=1)^nF_k, where F_k is a Fibonacci number. For n=1, 2, ..., the first few fibonorials ...
If g is a continuous function g(x) in [a,b] for all x in [a,b], then g has a fixed point in [a,b]. This can be proven by supposing that g(a)>=a g(b)<=b (1) g(a)-a>=0 ...
An equation of the form f(x,y,...)=0, where f contains a finite number of independent variables, known functions, and unknown functions which are to be solved for. Many ...
1 ... 49|50|51|52|53|54|55 ... 87 Previous Next

...