TOPICS
Search

Search Results for ""


131 - 140 of 1522 for Hermitian spaceSearch Results
The maximal number of regions into which space can be divided by n planes is f(n)=1/6(n^3+5n+6) (Yaglom and Yaglom 1987, pp. 102-106). For n=1, 2, ..., these give the values ...
An abstract vector space of dimension n over a field k is the set of all formal expressions a_1v_1+a_2v_2+...+a_nv_n, (1) where {v_1,v_2,...,v_n} is a given set of n objects ...
If W is a k-dimensional subspace of a vector space V with inner product <,>, then it is possible to project vectors from V to W. The most familiar projection is when W is the ...
A square matrix A is antihermitian if it satisfies A^(H)=-A, (1) where A^(H) is the adjoint. For example, the matrix [i 1+i 2i; -1+i 5i 3; 2i -3 0] (2) is an antihermitian ...
For any Abelian group G and any natural number n, there is a unique space (up to homotopy type) such that all homotopy groups except for the nth are trivial (including the ...
States that for a nondissipative Hamiltonian system, phase space density (the area between phase space contours) is constant. This requires that, given a small time increment ...
The set of left cosets of a subgroup H of a topological group G forms a topological space. Its topology is defined by the quotient topology from pi:G->G/H. Namely, the open ...
The tensor product of two vector spaces V and W, denoted V tensor W and also called the tensor direct product, is a way of creating a new vector space analogous to ...
Every complex matrix A can be broken into a Hermitian part A_H=1/2(A+A^(H)) (i.e., A_H is a Hermitian matrix) and an antihermitian part A_(AH)=1/2(A-A^(H)) (i.e., A_(AH) is ...
A closed two-form omega on a complex manifold M which is also the negative imaginary part of a Hermitian metric h=g-iomega is called a Kähler form. In this case, M is called ...
1 ... 11|12|13|14|15|16|17 ... 153 Previous Next

...