TOPICS
Search

Search Results for ""


501 - 510 of 3733 for Gamma FunctionSearch Results
The alternating factorial is defined as the sum of consecutive factorials with alternating signs, a(n)=sum_(k=1)^n(-1)^(n-k)k!. (1) They can be given in closed form as ...
A number b_(2n) having generating function sum_(n=0)^(infty)b_(2n)x^(2n) = 1/2ln((e^(x/2)-e^(-x/2))/(1/2x)) (1) = 1/2ln2+1/(48)x^2-1/(5760)x^4+1/(362880)x^6-.... (2) For n=1, ...
A general quartic surface defined by x^4+y^4+z^4+a(x^2+y^2+z^2)^2+b(x^2+y^2+z^2)+c=0 (1) (Gray 1997, p. 314). The above two images correspond to (a,b,c)=(0,0,-1), and ...
The Fourier transform of the generalized function 1/x is given by F_x(-PV1/(pix))(k) = -1/piPVint_(-infty)^infty(e^(-2piikx))/xdx (1) = ...
Riemann defined the function f(x) by f(x) = sum_(p^(nu)<=x; p prime)1/nu (1) = sum_(n=1)^(|_lgx_|)(pi(x^(1/n)))/n (2) = pi(x)+1/2pi(x^(1/2))+1/3pi(x^(1/3))+... (3) (Hardy ...
The probability density function for Student's z-distribution is given by f_n(z)=(Gamma(n/2))/(sqrt(pi)Gamma((n-1)/2))(1+z^2)^(-n/2). (1) Now define ...
Let f(x,y) be a homogeneous function of order n so that f(tx,ty)=t^nf(x,y). (1) Then define x^'=xt and y^'=yt. Then nt^(n-1)f(x,y) = ...
For a delta function at (x_0,y_0), R(p,tau) = int_(-infty)^inftyint_(-infty)^inftydelta(x-x_0)delta(y-y_0)delta[y-(tau+px)]dydx (1) = ...
A modified spherical Bessel function of the second kind, also called a "spherical modified Bessel function of the first kind" (Arfken 1985) or (regrettably) a "modified ...
Zeros of the Riemann zeta function zeta(s) come in two different types. So-called "trivial zeros" occur at all negative even integers s=-2, -4, -6, ..., and "nontrivial ...
1 ... 48|49|50|51|52|53|54 ... 374 Previous Next

...