Search Results for ""
491 - 500 of 3733 for Gamma FunctionSearch Results

Let sigma(n) be the divisor function. Then lim sup_(n->infty)(sigma(n))/(nlnlnn)=e^gamma, where gamma is the Euler-Mascheroni constant. Ramanujan independently discovered a ...
_0F_1(;a;z)=lim_(q->infty)_1F_1(q;a;z/q). (1) It has a series expansion _0F_1(;a;z)=sum_(n=0)^infty(z^n)/((a)_nn!) (2) and satisfies z(d^2y)/(dz^2)+a(dy)/(dz)-y=0. (3) It is ...
(Bailey 1935, p. 25), where _7F_6(a_1,...,a_7;b_1,...,b_6) and _4F_3(a_1,...,a_4;b_1,b_2,b_3) are generalized hypergeometric functions with argument z=1 and Gamma(z) is the ...
A product involving an infinite number of terms. Such products can converge. In fact, for positive a_n, the product product_(n=1)^(infty)a_n converges to a nonzero number iff ...
The spherical Hankel function of the second kind h_n^((1))(z) is defined by h_n^((2))(z) = sqrt(pi/(2x))H_(n+1/2)^((2))(z) (1) = j_n(z)-in_n(z), (2) where H_n^((2))(z) is the ...
sum_(k=0)^m(phi_k(x)phi_k(y))/(gamma_k)=(phi_(m+1)(x)phi_m(y)-phi_m(x)phi_(m+1)(y))/(a_mgamma_m(x-y),) (1) where phi_k(x) are orthogonal polynomials with weighting function ...
Constants gamma such that [int_Omega|f|^qdx]^(1/q)<=gamma[int_Omegasum_(i=1)^N|(partialf)/(partialx_i)|^pdx]^(1/p), where f is a real-valued smooth function on a region Omega ...
The hyperbolic cosine integral, often called the "Chi function" for short, is defined by Chi(z)=gamma+lnz+int_0^z(cosht-1)/tdt, (1) where gamma is the Euler-Mascheroni ...
The distribution with probability density function and distribution function P(r) = (re^(-r^2/(2s^2)))/(s^2) (1) D(r) = 1-e^(-r^2/(2s^2)) (2) for r in [0,infty) and parameter ...
Let alpha, -beta, and -gamma^(-1) be the roots of the cubic equation t^3+2t^2-t-1=0, (1) then the Rogers L-function satisfies L(alpha)-L(alpha^2) = 1/7 (2) ...

...