Confluent Hypergeometric Limit Function


It has a series expansion


and satisfies


It is implemented in the Wolfram Language as Hypergeometric0F1[b, z].

A Bessel function of the first kind can be expressed in terms of this function by


(Petkovšek et al. 1996).

See also

Confluent Hypergeometric Function of the First Kind, Generalized Hypergeometric Function, Hypergeometric Function

Related Wolfram sites,

Explore with Wolfram|Alpha


Petkovšek, M.; Wilf, H. S.; and Zeilberger, D. A=B. Wellesley, MA: A K Peters, p. 38, 1996.

Referenced on Wolfram|Alpha

Confluent Hypergeometric Limit Function

Cite this as:

Weisstein, Eric W. "Confluent Hypergeometric Limit Function." From MathWorld--A Wolfram Web Resource.

Subject classifications