 |
(1)
|
It has a series expansion
 |
(2)
|
and satisfies
 |
(3)
|
It is implemented in the Wolfram Language as Hypergeometric0F1[b,
z].
A Bessel function of the first kind
can be expressed in terms of this function by
 |
(4)
|
(Petkovšek et al. 1996).
See also
Confluent Hypergeometric Function of the First Kind,
Generalized
Hypergeometric Function,
Hypergeometric
Function
Related Wolfram sites
http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric0F1/,
http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric0F1Regularized/
Explore with Wolfram|Alpha
References
Petkovšek, M.; Wilf, H. S.; and Zeilberger, D. A=B.
Wellesley, MA: A K Peters, p. 38, 1996.Referenced on Wolfram|Alpha
Confluent Hypergeometric
Limit Function
Cite this as:
Weisstein, Eric W. "Confluent Hypergeometric Limit Function." From MathWorld--A Wolfram Web Resource.
https://mathworld.wolfram.com/ConfluentHypergeometricLimitFunction.html
Subject classifications