Search Results for ""
1521 - 1530 of 2127 for Evaluation of formulas, expressions, and...Search Results
When the index nu is real, the functions J_nu(z), J_nu^'(z), Y_nu(z), and Y_nu^'(z) each have an infinite number of real zeros, all of which are simple with the possible ...
A Bessel function of the second kind Y_n(x) (e.g, Gradshteyn and Ryzhik 2000, p. 703, eqn. 6.649.1), sometimes also denoted N_n(x) (e.g, Gradshteyn and Ryzhik 2000, p. 657, ...
Define the first Brocard point as the interior point Omega of a triangle for which the angles ∠OmegaAB, ∠OmegaBC, and ∠OmegaCA are equal to an angle omega. Similarly, define ...
Let X_1,X_2,...,X_N be a set of N independent random variates and each X_i have an arbitrary probability distribution P(x_1,...,x_N) with mean mu_i and a finite variance ...
If Y_i have normal independent distributions with mean 0 and variance 1, then chi^2=sum_(i=1)^rY_i^2 (1) is distributed as chi^2 with r degrees of freedom. This makes a chi^2 ...
A portion of a disk whose upper boundary is a (circular) arc and whose lower boundary is a chord making a central angle theta<pi radians (180 degrees), illustrated above as ...
The improvement of the convergence properties of a series, also called convergence acceleration or accelerated convergence, such that a series reaches its limit to within ...
A series is said to be convergent if it approaches some limit (D'Angelo and West 2000, p. 259). Formally, the infinite series sum_(n=1)^(infty)a_n is convergent if the ...
The Dirichlet beta function is defined by the sum beta(x) = sum_(n=0)^(infty)(-1)^n(2n+1)^(-x) (1) = 2^(-x)Phi(-1,x,1/2), (2) where Phi(z,s,a) is the Lerch transcendent. The ...
The Dirichlet eta function is the function eta(s) defined by eta(s) = sum_(k=1)^(infty)((-1)^(k-1))/(k^s) (1) = (1-2^(1-s))zeta(s), (2) where zeta(s) is the Riemann zeta ...
...
View search results from all Wolfram sites (120733 matches)

