TOPICS
Search

Search Results for ""


861 - 870 of 877 for Euclidean domainSearch Results
In 1611, Kepler proposed that close packing (either cubic or hexagonal close packing, both of which have maximum densities of pi/(3sqrt(2)) approx 74.048%) is the densest ...
The Mittag-Leffler function (Mittag-Leffler 1903, 1905) is an entire function defined by the series E_alpha(z)=sum_(k=0)^infty(z^k)/(Gamma(alphak+1)) (1) for alpha>0. It is ...
An ordinary differential equation (frequently called an "ODE," "diff eq," or "diffy Q") is an equality involving a function and its derivatives. An ODE of order n is an ...
The power tower of order k is defined as a^^k=a^(a^(·^(·^(·^a))))_()_(k), (1) where ^ is Knuth up-arrow notation (Knuth 1976), which in turn is defined by ...
A simple graph, also called a strict graph (Tutte 1998, p. 2), is an unweighted, undirected graph containing no graph loops or multiple edges (Gibbons 1985, p. 2; West 2000, ...
The signed Stirling numbers of the first kind are variously denoted s(n,m) (Riordan 1980, Roman 1984), S_n^((m)) (Fort 1948, Abramowitz and Stegun 1972), S_n^m (Jordan 1950). ...
The number of ways of partitioning a set of n elements into m nonempty sets (i.e., m set blocks), also called a Stirling set number. For example, the set {1,2,3} can be ...
The (unilateral) Z-transform of a sequence {a_k}_(k=0)^infty is defined as Z[{a_k}_(k=0)^infty](z)=sum_(k=0)^infty(a_k)/(z^k). (1) This definition is implemented in the ...
The (unilateral) Z-transform of a sequence {a_k}_(k=0)^infty is defined as Z[{a_k}_(k=0)^infty](z)=sum_(k=0)^infty(a_k)/(z^k). (1) This definition is implemented in the ...
Hilbert's problems are a set of (originally) unsolved problems in mathematics proposed by Hilbert. Of the 23 total appearing in the printed address, ten were actually ...
1 ... 84|85|86|87|88 Previous Next

...