TOPICS
Search

Search Results for ""


131 - 140 of 1485 for Elliptic integralSearch Results
Serret's integral is given by int_0^1(ln(x+1))/(x^2+1)dx = 1/8piln2 (1) = 0.272198... (2) (OEIS A102886; Serret 1844; Gradshteyn and Ryzhik 2000, eqn. 4.291.8; Boros and Moll ...
Kontsevich's integral is a far-reaching generalization of the Gauss integral for the linking number, and provides a tool to construct the universal Vassiliev invariant of a ...
J_n(x)=1/piint_0^picos(ntheta-xsintheta)dtheta, where J_n(x) is a Bessel function of the first kind.
alpha(x) = 1/(sqrt(2pi))int_(-x)^xe^(-t^2/2)dt (1) = sqrt(2/pi)int_0^xe^(-t^2/2)dt (2) = 2Phi(x) (3) = erf(x/(sqrt(2))), (4) where Phi(x) is the normal distribution function ...
F(x) = Li_2(1-x) (1) = int_(1-x)^0(ln(1-t))/tdt, (2) where Li_2(x) is the dilogarithm.
Legendre and Whittaker and Watson's (1990) term for the beta integral int_0^1x^p(1-x)^qdx, whose solution is the beta function B(p+1,q+1).
The inverse of the Laplace transform F(t) = L^(-1)[f(s)] (1) = 1/(2pii)int_(gamma-iinfty)^(gamma+iinfty)e^(st)f(s)ds (2) f(s) = L[F(t)] (3) = int_0^inftyF(t)e^(-st)dt. (4)
Cauchy's integral formula states that f(z_0)=1/(2pii)∮_gamma(f(z)dz)/(z-z_0), (1) where the integral is a contour integral along the contour gamma enclosing the point z_0. It ...
The so-called generalized Fourier integral is a pair of integrals--a "lower Fourier integral" and an "upper Fourier integral"--which allow certain complex-valued functions f ...
Let alpha(x) be a monotone increasing function and define an interval I=(x_1,x_2). Then define the nonnegative function U(I)=alpha(x_2)-alpha(x_1). The Lebesgue integral with ...
1 ... 11|12|13|14|15|16|17 ... 149 Previous Next

...