Search Results for ""
351 - 360 of 1736 for Elliptic Integralofthe Second KindSearch Results
![](/common/images/search/spacer.gif)
A roulette is a curve traced by a fixed point on a closed convex curve as that curve rolls without slipping along a second curve. The roulettes described by the foci of ...
The limaçon is a polar curve of the form r=b+acostheta (1) also called the limaçon of Pascal. It was first investigated by Dürer, who gave a method for drawing it in ...
An unfolding is the cutting along edges and flattening out of a polyhedron to form a net. Determining how to unfold a polyhedron into a net is tricky. For example, cuts ...
The second-order ordinary differential equation y^('')+(y^')/x+(1-(nu^2)/(x^2))y=(x-nu)/(pix^2)sin(pinu) whose solutions are Anger functions.
The arithmetic-geometric mean agm(a,b) of two numbers a and b (often also written AGM(a,b) or M(a,b)) is defined by starting with a_0=a and b_0=b, then iterating a_(n+1) = ...
_0F_1(;a;z)=lim_(q->infty)_1F_1(q;a;z/q). (1) It has a series expansion _0F_1(;a;z)=sum_(n=0)^infty(z^n)/((a)_nn!) (2) and satisfies z(d^2y)/(dz^2)+a(dy)/(dz)-y=0. (3) It is ...
The jinc function is defined as jinc(x)=(J_1(x))/x, (1) where J_1(x) is a Bessel function of the first kind, and satisfies lim_(x->0)jinc(x)=1/2. The derivative of the jinc ...
The Rayleigh functions sigma_n(nu) for n=1, 2, ..., are defined as sigma_n(nu)=sum_(k=1)^inftyj_(nu,k)^(-2n), where +/-j_(nu,k) are the zeros of the Bessel function of the ...
The three circumcircles through the triangle centroid G of a given triangle DeltaA_1A_2A_3 and the pairs of the vertices of the second Brocard triangle are called the McCay ...
Let s=1/(sqrt(2pi))[Gamma(1/4)]^2=5.2441151086... (1) (OEIS A064853) be the arc length of a lemniscate with a=1. Then the lemniscate constant is the quantity L = 1/2s (2) = ...
![](/common/images/search/spacer.gif)
...