TOPICS
Search

Search Results for ""


161 - 170 of 483 for Double FactorialSearch Results
A permutation matrix is a matrix obtained by permuting the rows of an n×n identity matrix according to some permutation of the numbers 1 to n. Every row and column therefore ...
Consider the expression 3×7+2^2. This expression has value (3×7)+(2^2)=25 due to what is called operator precedence (or "order of operations"). Precedence of common operators ...
The rook numbers r_k^((m,n)) of an m×n board are the number of subsets of size k such that no two elements have the same first or second coordinate. In other word, it is the ...
Let a simple graph G have n vertices, chromatic polynomial P(x), and chromatic number chi. Then P(G) can be written as P(G)=sum_(i=0)^ha_i·(x)_(p-i), where h=n-chi and (x)_k ...
Given the sum-of-factorials function Sigma(n)=sum_(k=1)^nk!, SW(p) is the smallest integer for p prime such that Sigma[SW(p)] is divisible by p. If pSigma(n) for all n<p, ...
The superfactorial of n is defined by Pickover (1995) as n$=n!^(n!^(·^(·^(·^(n!)))))_()_(n!). (1) The first two values are 1 and 4, but subsequently grow so rapidly that 3$ ...
The d-analog of a complex number s is defined as [s]_d=1-(2^d)/(s^d) (1) (Flajolet et al. 1995). For integer n, [2]!=1 and [n]_d! = [3][4]...[n] (2) = ...
The exponential function has two different natural q-extensions, denoted e_q(z) and E_q(z). They are defined by e_q(z) = sum_(n=0)^(infty)(z^n)/((q;q)_n) (1) = _1phi_0[0; ...
A q-analog of the gamma function defined by Gamma_q(x)=((q;q)_infty)/((q^x;q)_infty)(1-q)^(1-x), (1) where (x,q)_infty is a q-Pochhammer symbol (Koepf 1998, p. 26; Koekoek ...
A labeled graph whose nodes are indexed by the generators of a Coxeter group having (P_i,P_j) as an graph edge labeled by M_(ij) whenever M_(ij)>2, where M_(ij) is an element ...
1 ... 14|15|16|17|18|19|20 ... 49 Previous Next

...