TOPICS
Search

Sigma Polynomial


Let a simple graph G have n vertices, chromatic polynomial P(x), and chromatic number chi. Then P(G) can be written as

 P(G)=sum_(i=0)^ha_i·(x)_(p-i),

where h=n-chi and (x)_k is a falling factorial, and the polynomial

 sigma(G)=sum_(i=0)^ha_ix^(h-i)

is known as the sigma-polynomial (Frucht and Giudici 1983; Li et al. 1987; Read and Wilson 1998, p. 265).

sigma-polynomials for a number of simple graphs are summarized in the following table.


See also

Chromatic Polynomial, Royle Graphs

Explore with Wolfram|Alpha

References

Frucht, R. W. and Giudici, R. E. "Some Chromatically Unique Graphs with Seven Points." Ars Combin. A 16, 161-172, 1983.Korfhage, R. R. "sigma-Polynomials and Graph Coloring." J. Combin. Th. Ser. B 24, 137-153, 1978.Li, N.-Z.; Whitehead, E. G. Jr.; and Xu, S.-J. "Classification of Chromatically Unique Graphs Having Quadratic sigma-Polynomials." J. Graph Th. 11, 169-176, 1987.Read, R. C. and Wilson, R. J. An Atlas of Graphs. Oxford, England: Oxford University Press, p. 265, 1998.

Referenced on Wolfram|Alpha

Sigma Polynomial

Cite this as:

Weisstein, Eric W. "Sigma Polynomial." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/SigmaPolynomial.html

Subject classifications