TOPICS
Search

Search Results for ""


81 - 90 of 355 for Bessels InequalitySearch Results
For x>0, J_0(x) = 2/piint_0^inftysin(xcosht)dt (1) Y_0(x) = -2/piint_0^inftycos(xcosht)dt, (2) where J_0(x) is a zeroth order Bessel function of the first kind and Y_0(x) is ...
The formulas j_n(z) = z^n(-1/zd/(dz))^n(sinz)/z (1) y_n(z) = -z^n(-1/zd/(dz))^n(cosz)/z (2) for n=0, 1, 2, ..., where j_n(z) is a spherical Bessel function of the first kind ...
A Bessel function of the second kind Y_n(x) (e.g, Gradshteyn and Ryzhik 2000, p. 703, eqn. 6.649.1), sometimes also denoted N_n(x) (e.g, Gradshteyn and Ryzhik 2000, p. 657, ...
An expansion based on the roots of x^(-n)[xJ_n^'(x)+HJ_n(x)]=0, where J_n(x) is a Bessel function of the first kind, is called a Dini expansion.
int_0^inftye^(-ax)J_0(bx)dx=1/(sqrt(a^2+b^2)), where J_0(z) is the zeroth order Bessel function of the first kind.
A function I_n(x) which is one of the solutions to the modified Bessel differential equation and is closely related to the Bessel function of the first kind J_n(x). The above ...
A modified spherical Bessel function of the first kind (Abramowitz and Stegun 1972), also called a "spherical modified Bessel function of the first kind" (Arfken 1985), is ...
The Poisson integral with n=0, J_0(z)=1/piint_0^picos(zcostheta)dtheta, where J_0(z) is a Bessel function of the first kind.
j_n(z)=(z^n)/(2^(n+1)n!)int_0^picos(zcostheta)sin^(2n+1)thetadtheta, where j_n(z) is a spherical Bessel function of the first kind.
An entire function which is a generalization of the Bessel function of the first kind defined by J_nu(z)=1/piint_0^picos(nutheta-zsintheta)dtheta. Anger's original function ...
1 ... 6|7|8|9|10|11|12 ... 36 Previous Next

...