Search Results for ""
191 - 200 of 425 for Basic ratiosSearch Results
The numbers H_n=H_n(0), where H_n(x) is a Hermite polynomial, may be called Hermite numbers. For n=0, 1, ..., the first few are 1, 0, -2, 0, 12, 0, -120, 0, 1680, 0, ... ...
The sequence defined by G(0)=0 and G(n)=n-G(G(n-1)). (1) The first few terms for n=1, 2, ... are 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 9, ... (OEIS A005206). This can be ...
The hyperbolic cosine is defined as coshz=1/2(e^z+e^(-z)). (1) The notation chx is sometimes also used (Gradshteyn and Ryzhik 2000, p. xxix). This function describes the ...
The hyperbolic sine is defined as sinhz=1/2(e^z-e^(-z)). (1) The notation shz is sometimes also used (Gradshteyn and Ryzhik 2000, p. xxix). It is implemented in the Wolfram ...
Solving the nome q for the parameter m gives m(q) = (theta_2^4(q))/(theta_3^4(q)) (1) = (16eta^8(1/2tau)eta^(16)(2tau))/(eta^(24)(tau)), (2) where theta_i(q)=theta_i(0,q) is ...
The inversive distance is the natural logarithm of the ratio of two concentric circles into which the given circles can be inverted. Let c be the distance between the centers ...
The isoperimetric quotient of a closed curve is defined as the ratio of the curve area to the area of a circle (A=pir_A^2) with same perimeter (p=2pir_p) as the curve, Q = ...
Let omega_1 and omega_2 be periods of a doubly periodic function, with tau=omega_2/omega_1 the half-period ratio a number with I[tau]!=0. Then Klein's absolute invariant ...
The logarithmic spiral is a spiral whose polar equation is given by r=ae^(btheta), (1) where r is the distance from the origin, theta is the angle from the x-axis, and a and ...
For triangles in the plane, AD·BE·CF=BD·CE·AF. (1) For spherical triangles, sinAD·sinBE·sinCF=sinBD·sinCE·sinAF. (2) This can be generalized to n-gons P=[V_1,...,V_n], where ...
...
View search results from all Wolfram sites (21249 matches)

