See also Ceva's Theorem ,
Hoehn's
Theorem ,
Pasch's Axiom
Explore with Wolfram|Alpha
References Beyer, W. H. (Ed.). CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 122,
1987. Coxeter, H. S. M. and Greitzer, S. L. "Menelaus's
Theorem." §3.4 in Geometry
Revisited. Washington, DC: Math. Assoc. Amer., pp. 66-67, 1967. Durell,
C. V. Modern
Geometry: The Straight Line and Circle. London: Macmillan, pp. 42-44,
1928. Graustein, W. C. Introduction
to Higher Geometry. New York: Macmillan, p. 81, 1930. Grünbaum,
B. and Shepard, G. C. "Ceva, Menelaus, and the Area Principle." Math.
Mag. 68 , 254-268, 1995. Honsberger, R. "The Theorem of
Menelaus." Ch. 13 in Episodes
in Nineteenth and Twentieth Century Euclidean Geometry. Washington, DC: Math.
Assoc. Amer., pp. 147-154, 1995. Pedoe, D. Circles:
A Mathematical View, rev. ed. Washington, DC: Math. Assoc. Amer., p. xxi,
1995. Wells, D. The
Penguin Dictionary of Curious and Interesting Geometry. London: Penguin,
p. 150, 1991. Referenced on Wolfram|Alpha Menelaus' Theorem
Cite this as:
Weisstein, Eric W. "Menelaus' Theorem."
From MathWorld --A Wolfram Web Resource. https://mathworld.wolfram.com/MenelausTheorem.html
Subject classifications