Search Results for ""
171 - 180 of 3358 for Ackermann FunctionSearch Results
![](/common/images/search/spacer.gif)
The shah function is defined by m(x) = sum_(n=-infty)^(infty)delta(x-n) (1) = sum_(n=-infty)^(infty)delta(x+n), (2) where delta(x) is the delta function, so m(x)=0 for x not ...
Ein(z) = int_0^z((1-e^(-t))dt)/t (1) = E_1(z)+lnz+gamma, (2) where gamma is the Euler-Mascheroni constant and E_1 is the En-function with n=1.
The cylinder function is defined as C(x,y)={1 for sqrt(x^2+y^2)<=a; 0 for sqrt(x^2+y^2)>a. (1) The Bessel functions are sometimes also called cylinder functions. To find the ...
A function tau(n) related to the divisor function sigma_k(n), also sometimes called Ramanujan's tau function. It is defined via the Fourier series of the modular discriminant ...
The regularized beta function is defined by I(z;a,b)=(B(z;a,b))/(B(a,b)), where B(z;a,b) is the incomplete beta function and B(a,b) is the (complete) beta function. The ...
The function defined by T_n(x)=((-1)^(n-1))/(sqrt(n!))Z^((n-1))(x), where Z(x)=1/(sqrt(2pi))e^(-x^2/2) and Z^((k))(x) is the kth derivative of Z(x).
The plots above show the values of the function obtained by taking the natural logarithm of the gamma function, lnGamma(z). Note that this introduces complicated branch cut ...
A q-analog of the beta function B(a,b) = int_0^1t^(a-1)(1-t)^(b-1)dt (1) = (Gamma(a)Gamma(b))/(Gamma(a+b)), (2) where Gamma(z) is a gamma function, is given by B_q(a,b) = ...
The beta function B(p,q) is the name used by Legendre and Whittaker and Watson (1990) for the beta integral (also called the Eulerian integral of the first kind). It is ...
The term "Euler function" may be used to refer to any of several functions in number theory and the theory of special functions, including 1. the totient function phi(n), ...
![](/common/images/search/spacer.gif)
...