TOPICS
Search

Tetrachoric Function


TetrachoricFunction

The function defined by

 T_n(x)=((-1)^(n-1))/(sqrt(n!))Z^((n-1))(x),

where

 Z(x)=1/(sqrt(2pi))e^(-x^2/2)

and Z^((k))(x) is the kth derivative of Z(x).


See also

Normal Distribution, Standard Normal Distribution

Explore with Wolfram|Alpha

References

Kenney, J. F. and Keeping, E. S. "Tetrachoric Correlation." §8.5 in Mathematics of Statistics, Pt. 2, 2nd ed. Princeton, NJ: Van Nostrand, pp. 205-207, 1951.

Referenced on Wolfram|Alpha

Tetrachoric Function

Cite this as:

Weisstein, Eric W. "Tetrachoric Function." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/TetrachoricFunction.html

Subject classifications