TOPICS
Search

Sombor Spectral Radius


The Sombor spectral radius rho_(Sombor) of a graph is defined as the largest eigenvalue of the Sombor matrix.

Liu et al. (2022) shows that for any tree,

 rho_(Sombor)<=sqrt(n^3-3n^2+4n-2),

with equality iff the tree is the star graph S_n (Zheng et al. 2023).


See also

Sombor Matrix, Graph Eigenvalue, Spectral Radius

Explore with Wolfram|Alpha

References

Guo, X. and Gao, Y. "Arithmetic-Geometric Spectral Radius and Energy of Graphs." MATCH Commun. Math. Comput. Chem. 83, 651-680, 2020.Gutman, I. "Geometric Approach to Degree-Based Topological Indices: Sombor Indices." MATCH Commun. Math. Comput. Chem. 86, 11-16, 2021.Gutman, I. "Spectrum and Energy of the Sombor Matrix." Vojnoteh. Glas. 69, 551-561, 2021.Liu, H.; You, L.; Huang, Y.; Fang, S. "Spectral Properties of p-Sombor Matrices and Beyond." MATCH Commun. Math. Comput. Chem. 87, 59-87, 2022.Zheng, L.; Tian, G.; and Cui, S. "On Spectral Radius and Energy of Arithmetic-Geometric Matrix of Graphs." MATCH Commun. Math. Comput. Chem. 83, 635-650, 2020.Zheng, R.; Su, P.; and Jin. S. "Arithmetic-Geometric Matrix of Graphs and Its Applications." Appl. Math. Comput. 42, 127764, 1-11, 2023.

Cite this as:

Weisstein, Eric W. "Sombor Spectral Radius." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/SomborSpectralRadius.html

Subject classifications