TOPICS
Search

Smarandache Constants


"The" Smarandache constant is the smallest solution to the generalized Andrica's conjecture, x approx 0.567148 (OEIS A038458).

The first Smarandache constant is defined as

 S_1=sum_(n=2)^infty1/([mu(n)]!)=1.09317...
(1)

(OEIS A048799), where mu(n) is the Smarandache function. Cojocaru and Cojocaru (1996a) prove that S_1 exists and is bounded by 0.717<S_1<1.253.

Cojocaru and Cojocaru (1996b) prove that the second Smarandache constant

 S_2=sum_(n=2)^infty(mu(n))/(n!) approx 1.71400629359162
(2)

(OEIS A048834) is an irrational number.

Cojocaru and Cojocaru (1996c) prove that the series

 S_3=sum_(n=2)^infty1/(product_(i=2)^(n)S(i)) approx 0.719960700043708
(3)

converges to a number 0.71<S_3<1.01, and that

 S_4(a)=sum_(n=2)^infty(n^a)/(product_(i=2)^(n)S(i))
(4)

converges for a fixed real number a>=1. The values for small a are

S_4(1) approx 1.72875760530223
(5)
S_4(2) approx 4.50251200619297
(6)
S_4(3) approx 13.0111441949445
(7)
S_4(4) approx 42.4818449849626
(8)
S_4(5) approx 158.105463729329
(9)

(OEIS A048836, A048837, and A048838).

Sandor (1997) shows that the series

 S_5=sum_(n=1)^infty((-1)^(n-1)mu(n))/(n!)
(10)

converges to an irrational. Burton (1995) and Dumitrescu and Seleacu (1996) show that the series

 S_6=sum_(n=2)^infty(mu(n))/((n+1)!)
(11)

converges. Dumitrescu and Seleacu (1996) show that the series

 S_7=sum_(n=r)^infty(mu(n))/((n+r)!)
(12)

and

 S_8=sum_(n=r)^infty(mu(n))/((n-r)!)
(13)

converge for r a natural number (which must be nonzero in the latter case). Dumitrescu and Seleacu (1996) show that

 S_9=sum_(n=2)^infty1/(sum_(i=2)^(n)(S(i))/(i!))
(14)

converges. Burton (1995) and Dumitrescu and Seleacu (1996) show that the series

 S_(10)=sum_(n=2)^infty1/([mu(n)]^alphasqrt([mu(n)]!))
(15)

and

 S_(11)=sum_(n=2)^infty1/([mu(n)]^alphasqrt([mu(n)+1]!))
(16)

converge for alpha>1.


See also

Andrica's Conjecture, Smarandache Function

Explore with Wolfram|Alpha

References

Burton, E. "On Some Series Involving the Smarandache Function." Smarandache Notions J. 6, 13-15, 1995.Burton, E. "On Some Convergent Series." Smarandache Notions J. 7, 7-9, 1996.Cojocaru, I. and Cojocaru, S. "The First Constant of Smarandache." Smarandache Notions J. 7, 116-118, 1996a.Cojocaru, I. and Cojocaru, S. "The Second Constant of Smarandache." Smarandache Notions J. 7, 119-120, 1996b.Cojocaru, I. and Cojocaru, S. "The Third and Fourth Constants of Smarandache." Smarandache Notions J. 7, 121-126, 1996c."Constants Involving the Smarandache Function." http://www.gallup.unm.edu/~smarandache/CONSTANT.TXT.Dumitrescu, C. and Seleacu, V. "Numerical Series Involving the Function S." The Smarandache Function in Number Theory. Vail: Erhus University Press, pp. 48-61, 1996.Ibstedt, H. Surfing on the Ocean of Numbers--A Few Smarandache Notions and Similar Topics. Lupton, AZ: Erhus University Press, pp. 27-30, 1997.Sandor, J. "On The Irrationality of Certain Alternative Smarandache Series." Smarandache Notions J. 8, 143-144, 1997.Sloane, N. J. A. Sequences A038458, A048799, A048834, A048835, A048836, A048837, A048838, and A071120 in "The On-Line Encyclopedia of Integer Sequences."Smarandache, F. Collected Papers, Vol. 1. Bucharest, Romania: Tempus, 1996.Smarandache, F. Collected Papers, Vol. 2. Kishinev, Moldova: Kishinev University Press, 1997.

Referenced on Wolfram|Alpha

Smarandache Constants

Cite this as:

Weisstein, Eric W. "Smarandache Constants." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/SmarandacheConstants.html

Subject classifications