Consider a reference triangle with circumcenter and orthocenter , and let be its reflection triangle. Then Musselman's theorem states that the circles , , and meet in a second point that is the inverse in the circumcircle of the isogonal conjugate of the nine-point center. This point is Kimberling center and has center function
Musselman's Theorem
See also
Reflection TriangleExplore with Wolfram|Alpha
References
Grinberg, D. "On the Kosnita Point and the Reflection Triangle." Forum Geom. 3, 105-111, 2003. http://forumgeom.fau.edu/FG2003volume3/FG200311index.html.Musselman, J. R. and Goormaghtigh, R. "Advanced Problem 3928." Amer. Math. Monthly 46, 601, 1939.Musselman, J. R. and Goormaghtigh, R. "Solution to Advanced Problem 3928." Amer. Math. Monthly 48, 281-283, 1941.Nguyen, K. L. "A Synthetic Proof of Goormaghtigh's Generalization of Musselman's Theorem." Forum Geom. 5, 17-20, 2005.Referenced on Wolfram|Alpha
Musselman's TheoremCite this as:
Weisstein, Eric W. "Musselman's Theorem." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/MusselmansTheorem.html