TOPICS

# Matrix Inverse

The inverse of a square matrix , sometimes called a reciprocal matrix, is a matrix such that

 (1)

where is the identity matrix. Courant and Hilbert (1989, p. 10) use the notation to denote the inverse matrix.

A square matrix has an inverse iff the determinant (Lipschutz 1991, p. 45). The so-called invertible matrix theorem is major result in linear algebra which associates the existence of a matrix inverse with a number of other equivalent properties. A matrix possessing an inverse is called nonsingular, or invertible.

The matrix inverse of a square matrix may be taken in the Wolfram Language using the function Inverse[m].

For a matrix

 (2)

the matrix inverse is

 (3) (4)

For a matrix

 (5)

the matrix inverse is

 (6)

A general matrix can be inverted using methods such as the Gauss-Jordan elimination, Gaussian elimination, or LU decomposition.

The inverse of a product of matrices and can be expressed in terms of and . Let

 (7)

Then

 (8)

and

 (9)

Therefore,

 (10)

so

 (11)

where is the identity matrix, and

 (12)

Drazin Inverse, Gauss-Jordan Elimination, Gaussian Elimination, LU Decomposition, Matrix, Matrix 1-Inverse, Matrix Addition, Matrix Multiplication, Moore-Penrose Matrix Inverse, Nonsingular Matrix, Pseudoinverse, Singular Matrix, Strassen Formulas Explore this topic in the MathWorld classroom

Portions of this entry contributed by Christopher Stover

## Explore with Wolfram|Alpha

More things to try:

## References

Ayres, F. Jr. Schaum's Outline of Theory and Problems of Matrices. New York: Schaum, p. 11, 1962.Ben-Israel, A. and Greville, T. N. E. Generalized Inverses: Theory and Applications. New York: Wiley, 1977.Courant, R. and Hilbert, D. Methods of Mathematical Physics, Vol. 1. New York: Wiley, 1989.Jodár, L.; Law, A. G.; Rezazadeh, A.; Watson, J. H.; and Wu, G. "Computations for the Moore-Penrose and Other Generalized Inverses." Congress. Numer. 80, 57-64, 1991.Lipschutz, S. "Invertible Matrices." Schaum's Outline of Theory and Problems of Linear Algebra, 2nd ed. New York: McGraw-Hill, pp. 44-45, 1991.Nash, J. C. Compact Numerical Methods for Computers: Linear Algebra and Function Minimisation, 2nd ed. Bristol, England: Adam Hilger, pp. 24-26, 1990.Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. "Is Matrix Inversion an Process?" §2.11 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 95-98, 1992.Rosser, J. B. "A Method of Computing Exact Inverses of Matrices with Integer Coefficients." J. Res. Nat. Bur. Standards Sect. B. 49, 349-358, 1952.

Matrix Inverse

## Cite this as:

Stover, Christopher and Weisstein, Eric W. "Matrix Inverse." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/MatrixInverse.html