TOPICS
Search

Line-Line Angle


For two lines in the plane with endpoints (x_1,x_2) and (x_3,x_4), the angle between them is given by

 costheta=((x_2-x_1)·(x_4-x_3))/(|x_2-x_1||x_4-x_3|).
(1)

The angle theta between two lines in the plane specified in trilinear coordinates by

lalpha+mbeta+ngamma=0
(2)
l^'alpha+m^'beta+n^'gamma=0
(3)

is given by

 tantheta=y/x,
(4)

where

x=ll^'+mm^'+nn^'-(mn^'+m^'n)cosA-(nl^'+n^'l)cosB-(lm^'+l^'m)cosC
(5)
y=(mn^'-m^'n)sinA+(nl^'-n^'l)sinB+(lm^'-l^'m)sinC
(6)

(Kimberling 1998, p. 31).


See also

Line-Line Distance, Line-Line Intersection, Trilinear Line

Explore with Wolfram|Alpha

References

Kimberling, C. "Triangle Centers and Central Triangles." Congr. Numer. 129, 1-295, 1998.

Referenced on Wolfram|Alpha

Line-Line Angle

Cite this as:

Weisstein, Eric W. "Line-Line Angle." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Line-LineAngle.html

Subject classifications