Lehmer Number

A Lehmer number is a number generated by a generalization of a Lucas sequence. Let alpha and beta be complex numbers with


where Q and R are relatively prime nonzero integers and alpha/beta is not a root of unity. Then the corresponding Lehmer numbers are

 U_n(sqrt(R),Q)={(alpha^n-beta^n)/(alpha-beta)   for n odd,; (alpha^n-beta^n)/(alpha^2-beta^2)   for n even,

and the companion numbers

 V_n(sqrt(R),Q)={(alpha^n+beta^n)/(alpha+beta)   for n odd; alpha^n+beta^n   for n even.

See also

Lehmer's Mahler Measure Problem

Explore with Wolfram|Alpha


Lehmer, D. H. "An Extended Theory of Lucas' Functions." Ann. Math. 31, 419-448, 1930.Ribenboim, P. The New Book of Prime Number Records. New York: Springer-Verlag, pp. 61 and 70, 1989.Shorey, T. N. and Stewart, C. L. "On Divisors of Fermat, Fibonacci, Lucas and Lehmer Numbers, 2." J. London Math. Soc. 23, 17-23, 1981.Stewart, C. L. "On Divisors of Fermat, Fibonacci, Lucas and Lehmer Numbers." Proc. London Math. Soc. 35, 425-447, 1977.Williams, H. C. "The Primality of N=2A3^n-1." Canad. Math. Bull. 15, 585-589, 1972.

Referenced on Wolfram|Alpha

Lehmer Number

Cite this as:

Weisstein, Eric W. "Lehmer Number." From MathWorld--A Wolfram Web Resource.

Subject classifications