One of the three standard tori  given by the parametric
equations 
corresponding to the torus  with  .
It has coefficients of the first fundamental
form  given by
and of the second fundamental form  given
by
The area element  is
(10)
  
 
and the surface area  and volume 
are
The geometric centroid  is at  , and the moment of inertia tensor for a solid torus
 is given by
(13)
  
 
for a uniform density torus of mass  .
The inversion  of a horn torus is a horn cyclide . The above figures show a horn torus (left), a cutaway (middle), and
 a cross section  of the horn torus through the  -plane (right).
 
See also Apple Surface , 
Cyclide , 
Lemon Surface , 
Parabolic
 Spindle Cyclide , 
Ring Torus , 
Spindle
 Cyclide , 
Spindle Torus , 
Standard
 Tori , 
Torus 
Explore with Wolfram|Alpha 
References Gray, A.; Abbena, E.; and Salamon, S. Modern Differential Geometry of Curves and Surfaces with Mathematica, 3rd ed.   Boca
 Raton, FL: CRC Press, pp. 305-306, 2006. Pinkall, U. "Cyclides
 of Dupin." Ch. 3, §3 in Mathematical
 Models from the Collections of Universities and Museums: Commentary.   (Ed.
 G. Fischer). Braunschweig, Germany: Vieweg, pp. 28-30, 1986. Pinkall,
 U. "Dupinsche Zykliden." Ch. 3, §3 in Mathematische Modelle
 aus den Sammlungen von Universitäten und Museen: Kommentarband  (Ed. G. Fischer).
 Braunschweig, Germany: Vieweg, pp. 30-33, 1986. Referenced on Wolfram|Alpha Horn
 Torus 
Cite this as: 
Weisstein, Eric W.  "Horn Torus." From
MathWorld  --A Wolfram Resource. https://mathworld.wolfram.com/HornTorus.html 
Subject classifications More... Less...