See also
Bivalent Range, 
Euler Line, 
Gergonne Line, 
Harmonic
 Conjugate, 
Soddy Line
Explore with Wolfram|Alpha
References
Casey, J. "Theory of Harmonic Section." §6.3 in A
 Sequel to the First Six Books of the Elements of Euclid, Containing an Easy Introduction
 to Modern Geometry with Numerous Examples, 5th ed., rev. enl. Dublin: Hodges,
 Figgis, & Co., pp. 87-94, 1888.Durell, C. V. "Harmonic
 Ranges and Pencils." Ch. 6 in Modern
 Geometry: The Straight Line and Circle. London: Macmillan, pp. 65-67,
 1928.Graustein, W. C. "Harmonic Division." Ch. 4
 in Introduction
 to Higher Geometry. New York: Macmillan, pp. 50-64, 1930.Hardy,
 G. H. A
 Course of Pure Mathematics, 10th ed. Cambridge, England: Cambridge University
 Press, pp. 99 and 106, 1967.Lachlan, R. "Harmonic Properties."
 §288-290 in An
 Elementary Treatise on Modern Pure Geometry. London: Macmillian, pp. 177
 and 267-268, 1893.Referenced on Wolfram|Alpha
Harmonic Range
Cite this as:
Weisstein, Eric W. "Harmonic Range." From
MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/HarmonicRange.html
Subject classifications