TOPICS
Search

Great Dodecicosahedron


U63

The great dodecicosahedron is the uniform polyhedron with Maeder index 63 (Maeder 1997), Wenninger index 101 (Wenninger 1989), Coxeter index 79 (Coxeter et al. 1954), and Har'El index 68 (Har'El 1993). It has Wythoff symbol 35/33/2; 5/2| (Coxeter 1954, Fig. 79; Wenninger 1989, p. 156) or 5/35/23| and its faces are 20{6}+12{(10)/3}.

The great dodecicosahedron is implemented in the Wolfram Language as UniformPolyhedron[], UniformPolyhedron["GreatDodecicosahedron"], UniformPolyhedron[{"Coxeter", 79}], UniformPolyhedron[{"Kaleido", 68}], UniformPolyhedron[{"Uniform", 63}], or UniformPolyhedron[{"Wenninger", 101}]. It is also implemented in the Wolfram Language as PolyhedronData["GreatDodecicosahedron"].

DodecicosahedralGraph

Its skeleton is the dodecicosahedral graph, illustrated above in a few embeddings.

Its convex hull is the truncated dodecahedron.

Its circumradius for unit edge length is

 R=1/4sqrt(34-6sqrt(5)).

Its dual is the great dodecicosacron.


See also

Great Dodecicosacron, Uniform Polyhedron

Explore with Wolfram|Alpha

References

Coxeter, H. S. M.; Longuet-Higgins, M. S.; and Miller, J. C. P. "Uniform Polyhedra." Phil. Trans. Roy. Soc. London Ser. A 246, 401-450, 1954.Har'El, Z. "Uniform Solution for Uniform Polyhedra." Geometriae Dedicata 47, 57-110, 1993.Maeder, R. E. "63: Great Dodecicosahedron." 1997. https://www.mathconsult.ch/static/unipoly/63.html.Wenninger, M. J. "Great Dodecicosahedron." Model 101 in Polyhedron Models. Cambridge, England: Cambridge University Press, pp. 156-157, 1989.

Referenced on Wolfram|Alpha

Great Dodecicosahedron

Cite this as:

Weisstein, Eric W. "Great Dodecicosahedron." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/GreatDodecicosahedron.html

Subject classifications